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In  a laboratory study, the class of instabilities of the laminar Ekman layer called 
type I1 (or class A) are found to have the spectral characteristics of narrow-band 
noise (& N 5).  The unperturbed laminar profile resembles very closely the ideal 
Ekman solution. The frequency of the spectral peak varies with the Reynolds 
number as predicted theoretically by Lilly (1966), but the measured frequencies 
are only 60% of the predicted value. The critical Reynolds number for this 
instability is found to be 56.7, in good agreement with Lilly’s analysis. The 
measured boundary layer profile of the magnitude of the spectral peak has the 
behaviour predicted by Lilly. A sudden onset of turbulence is found a t  a Reynolds 
number of 148. 

1. Introduction 
The instabilities of the Ekman layer have been studied experimentally by 

Faller (1963)’ by Faller & Kaylor (1966), and by Tatro & Mollo-Christensen 
(1967). Theoretical investigations have been carried out by Lilly (1966) and by 
Faller & Kaylor (1965, 1966). Using flow visualization techniques, Faller made 
the first observations of ‘waves ’ forming in an Ekman flow, at Reynolds numbers 
above 125. (The Reynolds number Re is defined as VD/v where V is the speed of 
flow outside the boundary layer, D the boundary layer depth, and v the kine- 
matic viscosity.) Faller & Kaylor (1965) described another type of wave found at 
Re > 70. Tatro & Mollo-Christensen studied these waves in more detail using 
hot-wire anemometers and found both waves, a t  slightly different critical Rey- 
nolds numbers. Turbulence appeared at Reynolds numbers above 200. In  these 
papers, the instability which starts at lower Reynolds numbers is called type 11, 
and the one a t  higher Reynolds numbers is called type I. In  Greenspan’s (1968) 
review, type I1 is called class A and type I is called class B. Lilly, and Faller & 
Kaylor, used numerical techniques to study the problem, and obtained values 
for the critical Reynolds numbers and some parameters of the waves. It should 
be noted that the rotation rate is assumed to be very large, i.e. the Rossby number 
is assumed to be zero, in the theoretical studies. A compilation of the results of 
experiment and theory is given in table 1. 

The identification of the type I and I1 waves seen in the experiment with the 
instabilities found by Lilly seems well established, although there has been no 
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detailed study of the wave forms or spectra of these waves. The question of how 
well the ideal Ekman flow is realized in these earlier experiments is not known: 
Faller made no measurements of boundary layer profiles, and Tatro & Mollo- 
Christensen found that the thickness of the boundary layer in laminar flow 
varied with position and Reynolds number (in the ideal Ekman flow boundary 
layer thickness depends only on the rotation rate and the kinematic viscosity of 
the fluid). They presented no comparison of individual measured and theoretical 
profiles, however. No one actually measured a velocity profile. There is some 

Experiment 
A 7 ___ Theory 7 

7J---7 Faller, 
Type of Faller & Faller & Tatro 
instability Quantity Kaylor Lilly Kaylor et al. Present work 

Type I1 
(class A) 

Type 1 
(class B) 

Critical 55 55 < 70 56.3 + 56.7 
Reynolds number 116.8 Ro 

Velocity divided 0.50 0.57 - 0.16 Lilly) 

Wavelength, in 24 
Ekman depths 
&t 

by geostrophic 

Critical 118 110 125k5  124.5 + 
Reynolds number 7.32Ro 

Ekman depths 

Velocity divided 0.33(11") 0.094 0.023( 14.5') 0.034 
by geostrophic 

21 22 to 33 27.8 k 2.0 (Frequency 
61% of that 

- 15' - 20" + 5' to - 20" 0 to - 8" predicted by 

- 

I 
Wavelength, in 11 11.9 10.9 11.8 - 

&t 10"-12' 8" + 14.5 2.0' + 14.8" k 0.8" - 

- 

e t  is the angle between wavefront and geostrophic wind. 

TABLE 1. Summary of Ekman Iayer instabilities 

question as to whether the critical Reynolds number for type I1 (class A) waves 
depends on Rossby number: Tatro & Mollo-Christensen found that it did, but 
Faller (1966) suggests that it does not. For some of the parameters of the waves, 
there are discrepancies between Lilly's results and the measurements; for 
example, Tatro & Mollo-Christensen found the phase speed for the type I1 waves 
to be less than Q of the phase speed predicted, although the discrepancy in 
wavelength was only 30%. Using an apparatus similar to that of Tatro & 
Mollo-Christensen, we sought to clear up some of these points, and then study the 
transition to turbulence, which has not been pursued in the previous studies. 
Using digital recording and data-processing techniques made it practical, in 
terms of time and effort, to examine the resulting spectra, which contained 
fairly discrete waves and turbulence simultaneously. As will be explained below, 
we can distinguish the type I1 (class A) waves and the turbulence in the spectra, 
but we saw no type I (class B) waves. 
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2. Apparatus 
A schematic of the flow system, which is mounted on a rotating table, is given 

in figure 1. Air is drawn in on top of the table, brought to the outside under plate C, 
made to flow to the centre between plates A and B, and then blown out up the 
centre pipe. The mass flow was monitored by a Pitot-static tube placed in the 
blower outlet. The table was rotated by a Graham variable speed transmission at 
speeds continuously variable up to  105 revlmin. The transmission is powered 
by a three-phase motor which holds the table speed as steady as the power line 
frequency. 

4.5 Ill , 
FIGURE 1. Schematic diagram of rotating apparatus. 

Measurements of mean and fluctuating velocities were made near the bottom sur- 
face of plate B, near the top surface ofplate A ,  and in the interior flow between the 
plates using four types of hot-wire probes as shown in figure 2. These probes, which 
were inserted through one of a series of holes drilled in plate B, were used as follows : 

(i) This probe placed the hot wire, aligned vertically, at the midpoint between 
plates A and B for measurements of the magnitude of the velocity in the interior 
of the flow. 

(ii) This probe, when used with the traverse described below, placed the hot 
wire, horizontally aligned, in the boundary layer near the lower plate. When the 
bottom detector,' the small rod a t  the bend near the bottom, touched plate A ,  

a relay circuit stopped the vertical drive motor on the traverse, allowing place- 
ment of the hot wire very close to plate A without damage. 

(iii) This probe, used with the traverse, could be rotated to place a vertical 
hot wire a t  different radii, midway between the plates. This allowed measurement 
of the interior flow a t  continuously variable radii, which is not possible with 
probes such as (i). 

(iv) This wire was mounted on a lucite plug machined to fit flush with the 
bottom of plate B. 

A remotely controlled traverse was used to adjust the vertical position and 
orientation of probes (i), (ii) and (iii). The degree of rotation was indicated by a 

6 P L M  44 
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potentiometer. Vertical displacements were measured by pulses from a micro- 
switch triggered by a cam mounted on the shaft which moved the probe. Each 
revolution of this shaft corresponded to 0.0025 in. of vertical motion. 

Electrical connections to the rotating apparatus were provided by two sets of 
slip rings. A set of copper strips dipped in mercury-filled grooves was used for 
both high power and low noise circuits. A set of mechanical rings was used for less 

FIGURE 2.  Hot-wire probes. 

The hot-wire measurements were made in two ways. For mean flow measure- 
ments, the hot wire was connected to a constant resistance circuit (DISA Model 
55AOl). The voltage required to  keep the hot wire at constant resistance was 
measured by a voltage-to-frequency converter and a counter. Some of the 
turbulence measurements were made by high passing and recording this signal. 
Some of the measurements of low-frequency fluctuations were made by operating 
the wire in the constant ourrent mode, where the hot wire was connected in 
series with two 12 V car batteries and a 1000 ohm resistor for a ‘ constant current ’ 
mode of operation. The voltage across the hot wire was amplified and band- 
passed (band 0.1 to 20 cis) before the signal was passed through the slip rings. 
Signals were recorded digitally on a system composed of a Vidar scanner, 
Preston amplifier, Applied Development Corporation analog-to-digital converter 
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a.nd an incremental tape recorder. The recorder can make 500 steps per sec, so 
with twelve-bit accuracy and one channel, for example, 250 numbers per see can 
be recorded. 

3. The basic interior flow 
For the initial experiments the apparatus was smaller than shown in figure 1. 

The plate separation was the same, but the overall diameter was only 214cm 
(measured to the last entrance screen). The interior flow was measured with 
probes (i) and (ii). Probe (iii) was used to determine the direction of flow. The 
flow direction was found to be nearly tangential, with the flow spiralling in at an 
angle of one or two degrees from tangential, depending on the speed of flow and 
the rate of rotation. 

Radius (cm) 

FIGURE 3. The circulation, 27rVr, as a function of r ,  for four different flow rates. The last 
entering screen was at r = 108 cm. The rotation period was 2.50 sec. The dashed line 
represents the circulation at each radius for which the Reynolds number would be 100. 

Figure 3 shows the circulation, 271- Vr,  as a function of r ,  the radius. If the 
Rossby number Ro (= V/2nR, where R is the basic rotation rate) were zero, and 
the flow of infinite horizontal extent, the circulation should be the same every- 
where. (It should be noted that V is the speed of circumferential flow relative to 
the rotating plates.) The direction of flow in the core would be exactly tangential 
with transport to the centre occurring only in the boundary layer on each plate. 
The circulation would be equal to S/D, where S is the volume flow through the 
blowerandD = (v/!2)4, theEkmanlayerdepth. Neartheboundariestheflowwould 

u = [sin (z/D)exp (-z/D)]X/(271-Dr), be described by 

v = [ 1 - cos (z/D) exp ( - z/D)]X/(2nDr), 

where u is the radial component and v the tangential component of velocity and 
z is the vertical distance from the boundary. As z-fco, u-+ 0 and v-f V .  

6-2 
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This flow, which satisfies the equation of continuity exactly, and satisfies the 
Navier-Stokes equation in the limit of zero Rossby number, is an ideal Ekman 
layer bounding an exactly geostrophic core flow. This flow will not be realized in 
the present apparatus because: (i) the flow is not horizontally infinite, but must 
develop from the outer edge of the plates, and (ii) the Rossby number cannot be 
made small enough. Figure 4 shows the effect of both development and non-zero 
Rossby number on the circulation. Near the outer edge of the table the circula- 
tion (calculated in the rotating system) is very low. It increases as the flow 
develops inward and then decreases as the Rossby number becomes even larger 
near the centre of the table. Figure 4 shows the behaviour in the outer region in 

60 80 100 120 
Radius (em) 

FIGURE 4. The circulation, 277Vr, as a function of radius with rotation rate as a parameter, 
near the outer radius. The arrows indicate the estimated radius for ccntrifugal instability. 

detail at  different rotation rates. At the lower rotation rates the outer adjustment 
region extends farther toward the centre. Centrifugal instability seems to be the 
cause of this long adjustment region. The circulation of the flow in the rotating 
co-ordinate system at the radius r is 27rrV(r). In  the stationary system it is 
27rrV(r) + 2nrQ2 = S / D  + 27rrQ2. At the outer screen, r = R, the fluid has not yet 
been accelerated faster than the basic rotation so its circulation is at  most 
2nRQ2. There must, therefore, be a region where V ( r )  is such that the circulation 
decreases as we go outward. But centrifugal stability would require the circula- 
tion to increase outward, so this region must be unstable. The inner boundary of 
this region might be predicted by setting 27rr V ( r )  = 2nRQ2. This equation can be 
solved for the value of r at which the circulation becomes equal to the circulation 
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a t  the rim. On figure 4, this predicted radius has been marked with an arrow for 
each value of Q. In the adjustment region, the hot-wire signal shows very large 
oscillations indicating large eddies in the flow. 

Because of the wide region of adjustment, we decided to increase the size of the 
apparatus so the eddies would not interfere with measurements. The radius of 
the last screen was increased from 107 cm to 190.5 cm. Now, the inside edge of the 
adjustment zone should be a t  r = 183 cm for Vr = lo4 cm2/sec, Q = 2.5 radians/ 
see, instead of 95cm. Figure 5 shows the circulation before and after this 
change. 

The circulation drops smoothly with decreasing radius, probably because of 
non-linear effects associated with the increasing Rossby number, but the velocity 
continually increases inward to the smallest radius studied, only 0.5 cm from the 
inside screen. 
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FIGURE 5. The circulation, 27rVr, as a function or radius for the rebuilt (larger) apparatus, 
for five different flow rates. The rotation period was 1.00 sec. The dashed line represents 
the circulation at each radius for which the Reynolds number would be 100. The dotted 
and dashed line is the circulation in the old (smaller) apparatus for one flow rate. -.-, 
smaller table. 

4. Boundary layer mean flow profiles 
An example of the measured laminar boundary layer flow profiles is shown as 

figure 6. The data were taken with probe (5) (see figure 2). At a given height, the 
probe was rotated and the response as a function of direction plotted. The direc- 
tion of maximum apparent speed was found, and the speed measured a t  that 
angle. The zero angle is taken as the direction of flow well away from the plate. 
Measurementscould not be made closer than about 0.02 cm from the plate, because 
of heat losses from the hot wire to the plate. The measured boundary layer 
thickness 6 was defined as the height z where v/V = 0.8, which corresponds to 
z = D in the Ekman solution. For most of the measurements, the 2, component 
alone was determined by aligning the hot wire parallel to  the radius for the entire 
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traverse. Close agreement between the measured profiles and the Ekman solution 
is clearly seen in figure 6. 

In order to investigate the variation of d with radius, 6 was measured at  several 
blower speeds (below wave-producing speeds) at  several radii. The results are 
shown in table 2. There is little variation of boundary layer thickness with either 
speed of flow or radius at  these low Reynolds numbers. In  view of this result, it is 
not clear why Tatro & Mollo-Christensen did observe a significant radial variation. 

40" 

30' 

20 

10" 

0" 
I 

0.2 ". 0 
i 

0 2 4 6 8 
x = z/D 

FIGURE 6. Velocity proi3es for the laminar boundary layer. The rotation period is 2.50 seo, 
Reynolds number 103, Rossby number 0.125 and radius 97 cm. 

Reynolds Rossby 

97 om 33 0-039 0.997 
50 0.0595 0.965 
64 0-076 0.988 
78 0.092 1.000 
90 0-107 0.965 

108 0.128 1.010 
123 0.146 1.035 

36 cm 52 0.166 1.014 
92.5 0.296 1.028 

131 0.418 1.008 

Radius number number s l (v l f i ) *  

TABLE 2. Measurements of the depth S of the laminar Ekman layer 
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At higher Reynolds numbers the boundary layer proiile and thickness change 
radically with increasing Reynolds number. Turbulence smooths out the profiles 
and eliminates the overshoot as shown in figure 7. 

1.0 

0.8 

b8 0.6 
e . 
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400 7 662’ 
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FIGURE 7. Tangential velocity profiles at  various Reynolds numbers. The rotation period 
was 1.62 sec, radius 82 cm. The Rossby number for each profile is equal to the Reynolds 
number divided by 855. 

5. Onset of instability 
The hot-wire signal began to exhibit a wavelike character as the Reynolds 

number was increased. Characteristic records are shown in figures 8 and 9. As 
the Reynolds number was slowly increased, the waves appeared quite suddenly. 
The amplitude at first increased rapidly with increasing Reynolds number and 
then grew more slowly. With further increase in Reynolds number, the waves 
eventually were submerged in the turbulent signal. 

The critical Reynolds number was found by observing the waves on an oscillo- 
scope to find their approximate frequency, then feeding the signal from the hot- 
wire through a Krohn-Hite band pass filter with both cut-off frequencies set at  
the wave frequency. The filtered wave signal was then fed to a Hewlett-Packard 
voltage-to-frequency converter, which gives a pulse rate proportional to the 
magnitude of its input voltage, regardless of polarity. The pulse rate was averaged 
by a counter for typically 100sec. The output of the counter was plotted against 
Reynolds number until a sudden increase in reading showed that the waves 
started. A typical plot is shown in figure 10. Critical Reynolds numbers measured 
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in this way corresponded exactly with those taken from complete spectral 
analyses. 

The critical Reynolds number for the observed waves seems t.0 depend on 

2 ';;:p 
FIGURE 8. Chart recordings of the waves near onset. The signal was low-passed at  20 CIS. 
The apparent critical Reynolds number for this Rossby numbcr ( -  0-14) is 120. The 
rotation period was 3.32 sec, the radius 97 em. 

366 = R e  
I53 cmlsec = V 

7,16=? 
i40= I 

~* i?7= Rc 
87= v 

FIGURE 9. Chart recordings of the waves at higher Reynolds numbers, for the same con- 
ditions as figure 8 (but greatly compressed vertical scale). The record for Re = 137 is 
repeated for comparison. 
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Rossby number, or a t  least on the radius at  which the observation is made. 
Figure 11 shows the critical Reynolds number as a function of Rossby number. 
Tatro & Mollo-Christensen found an apparent radial dependence, which was 
removed when the measured boundary layer thickness and tangential velocity 
were used in calculating the Reynolds number, instead of using D and a velocity 
based solely on the total mass flow. Our critical Reynolds numbers which were 
computed using the measured tangential velocity and the measurements of 

50 100 150 
Reynolds number 

FIGURE 10. Power from constant current hot wire after filtering with band pass filter with 
both cut-off frequencies set on the peak wave frequency. 

boundary layer depth shown in table 2 (which shows no measurable deviation 
from D = (v/sZ*)), still exhibit an apparent variation of critical Reynolds number 
with either radius or Rossby number. This is explainable by a remark of Faller & 
Kaylor (1966, p. 479), that apparent variations of critical Reynolds number with 
Rossby number in the present type of apparatus might be due to the fact that as 
the disturbances grow from infinitesimal amplitude they move into regions of 
higher Reynolds number. The apparent critical Reynolds number, then, will 
always be higher than the Reynolds number at  which they started to grow. The 
increase will depend on the Rossby number, according to the expression given by 
Faller 

Re2( Re - Re,) (Re-2 - ReL2) = 3 . Ro . log, ( A  /Ac) , 

where Re = apparent critical Reynolds number, 

Re, = true critical Reynolds number, 

Ro = Rossby number, 

a 

c, = phase speed divided by external velocity, 

a = growth rate of waves divided by 52, 
A = minimum detectable amplitude, 

A,  = amplitude of waves when they start to grow. 
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When the data shown in figure 11 is fitted to this relationship in a least squares 
sense, we find the best fit with Re, = 56.7 f 3 and A/A,  r 5 x lo4. This value of 
Re, agrees very closely with that calculated by Lilly and observed by Tatro & 
Mollo-Christensen (see table 1). It might be noted that the determinations of 
critical Reynolds number were made by increasing the blower speed with rotation 
rate constant until the waves appeared. This procedure increases the Reynolds 
number and Rossby number proportionately, so we approached the curve of 
apparent critical Reynolds number zts. Rossby number at an oblique angle. 
This may be the cause of much of the scatter in the points in figure 11. 

200 

a --. 
2 
$ 

100 

0.25 0.50 0.75 
Ro 

FIGURE 11. Critical Reynolds number 218. Rossby number. The symbols represent different 
radii. ( 0 , 3 5 9  cm; 0,51*1 cm; +, 66.4 cm; X ,  97 cm; and *, 132.4 em). The solid h e  
is Faller’s formula, Re2(Re - Re,) (Re;2 - Re@) = CRo where Re, = 56.7 rf: 3 and C are deter- 
mined by a least squares fit t o  the data shown. The dashed line is the locus in the diagram 
for r = 97 cm and Cl = 2.5 rad/sec. This line is the path taken in a run. 

It seems, then, that we are seeing type I1 waves. One wonders why we do not 
see type I waves. A. J.Faller, in the course of reviewing this paper, made the 
following suggestions: (i) ‘If stationary type I bands were present, they would not 
pass by the hot wire, and there would be no evidence of their existence’. If the 
phase speed is low, they might pass the hot wire a t  a frequency comparable to 
the table rotation rate. At this frequency, the noise level might obscure them, 
(ii) It is possible that the apparent onset of turbulence near Re = 148 might be 
related to the appearance of type I waves and their interaction with type11 waves. 
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6. Spectra of waves 
Spectra were calculated from the hot-wire signals by processing the recordings 

made as described previously on a Control Data 3600 Computer. The technique 
used to compute the transform is described by Haubrich (1965), except that the 
Cooley-Tukey algorithm was used to shorten the computations. 

The spectrum changes radically in the Reynolds number range 100 to 200. 
Figure 12 shows the effect on the spectrum of increasing the Reynolds number 
from 124, just at onset, to 320. At Re = 320, the waves no longer stand out from 
the general turbulent spectrum, which seems to have an onset point of its own. 
Figure 13 shows the variation with Reynolds number of the peak energy (energy 
in a band centred around the spectral maximum) in db and the energy at  6.5 c/s. 
The waves start first, and stand out well above the noise until Re : 300, when 
they appear t o  lose energy to the turbulence. 

0 

- 20 

P 
5 -40 

- 60 

- 80 

2 4 6 8 10 12 14 

Frequency, CIS 
FIGURE 12. Smoothed spectra of signal from a short (0.1 em) vertical hot wire located about 
0.1 em from the boundary. The lower line is the spectrum of the signal when a resistor is 
substituted for the hot wire. 16,384 data points were used in analysing the signal into 
1024 frequencies so there are 32 degrees of freedom and the elementary frequency band is 
0.0152 c/s wide. The Rossby numbers for the spectra are as follows: R e  = 124, R o  = 0.31 ; 
R e  = 130, R o  = 0.32; R e  = 137, R o  = 0.33; R e  = 148, R o  = 0.35; R e  = 180, R o  = 0.42; 
R e  = 235, R o  = 0.56. 

Figure 14 shows the relative energy in the waves as a function of distance from 
the boundary. The shape of the curve, especially the sharp minimum between 
three and four Ekman depths, compares fairly well with figure 12 of Lilly’s paper. 
We find a minimum in wave energy at  zID = 3.5: Lilly predicts a minimum at 
z /D  = 2.9. We found this sharp minimum in every one of the four traverses. The 
sharpness of this minimum is remarkable for two reasons: (i) the computations do 
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not show such sharpness and (ii) at  this Reynolds number ( 2 0 5 ) ,  turbulent 
interactions might be expected to smear out vertical variations. 

The peak widths in figure 12 are typical. The Q of the peak is always 4 to 5 .  The 
centre frequency, fo, seems to increase with Reynolds numbers, but not sharply. 
The quantity CT = 27rf0/Q should be dependent only on the Reynolds number 
(27rf,,/Q = (27r/Q) (C, Vk/27rD) = C,KRe; C, is the dimensionless phase speed 
used by Lilly), so CT is plotted us. Reynolds number in figure 15. Values of fre- 
quencies for type I and type I1 waves as predicted by Lilly are plotted for 
comparison. Correlation of observed spectra, particularly peak frequencies 
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FIGURE 13. Energy near the wave peak, and in a somewhat higher frequency band us. 
Reynolds number for the runs whose spectra are shown in figure 12. 

- 30 
2 4  G 8 10 12 14 

Z I D  

FIGURE 14. Energy contained in the wave peak (band of frequencies 5.31 to 6-83 sec) 21s. 

distance from boundary in Ekman depths for r = 81.6 cm, rotation period = 1.63 sec, 
Rossby number = 0.242. Vcrtical scale is in db below arbitrary level. !2 = 3.85 rad/sec; 
Re = 205; fo = 5.92 CIS. 
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(such as are shown in figure l), with growth rate diagrams like Lilly’s (his figures 
1 through 8) is very difficult because: (i) The oscillations at  a given frequency are 
produced by waves which have many different values of vector wave-number. 
Figure 16 shows a diagram similar to Lilly’s figure 7 with contours of constant 
dimensionless frequency CT. The lines of constant frequency cross the contours of 
growth rate in such a way that, for example, CT = 10 for waves close to both of the 
two maxima of growth rate. (ii) The waves are observed at  Reynolds numbers 
much above Re,; they have grown by a factor of about 50,000, so one cannot 
expect a linear perturbation calculation to be applicable. (iii) Even if the analysis 

I00 200 
Re 

FIGURE 15. Centre frequency of wave peak in units of the table frequency v3. Reynolds 
number for numerous runs at  various T and a. -, Lilly most unstable mode (type 11) ; 
- _ -  , 60% of Lilly most unstable mode (type 11); -.--, most unstable mode (type I). 

were applicable, the calculation of the growth of the waves would require 
following their progress through from the first Reynolds number at  which they 
become unstable to the Reynolds number at  which they are observed. The largest 
amplitude wave at  a particular Reynolds number is not necessarily the one which 
has the highest growth rate for that Reynolds number, but the one which has 
grown the most through its entire history. It should beremembered that we have 
no information as to the direction of propagation of the waves. 

Despite the uncertainties involved in comparing observed spectra with growth 
rates calculated from perturbation theory, it is clear that we are mainly observing 
type I1 waves because: (i) The critical Reynolds number, when corrected for 
curvature (Rossby number) effects, is very close to previous results for type 11. 
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(ii) The central frequencies of the waves are increasing with increasing Reynolds 
number as in Lilly’s calculation for type 11, rather than decreasing toward zero 
as his calculation shows for type I. (iii) The variation of wave intensity with 
distance from the boundary (figure 14) is consistent with the eigenfunctions 
shown for type I1 by Lilly (his figure 12). However, the difference in this respect 
between types I and I1 is small. 

We are evidently seeing the waves emerge from the general level of distur- 
bances in the flow after they have been growing for some time. At a given 
frequency, we are seeing waves with many different wavelengths and directions, 
some of which may in fact be of ‘type I ’. The distinction becomes somewhat 
blurred at the higher Reynolds numbers; growth rates vary by no more than a 
factor of two along a line of constant frequency in figure 16 between the most 
unstable modes of each sort. 

0 

E 

FIGURE 16. Diagram showing the growth rates and frequencies predicted by Lilly for a 
Reynolds number of 150. (Rossby number is assumed zero.) e, maxima in growth rate. 

The waves observed by Tatro & Mollo-Christensen seemed to have higher 
Q’s, as their chart recordings do not show the ‘modulation’ characteristics of 
narrow-band signals, as do those exhibited in our figures 8 and 9. 

7. Conclusions 
(i) Flows with profiles very closely resembling the idealized Ekman form can be 

realized in the laboratory. The form of the velocity profiles in the boundary layer 
is quite close to the Ekman form for Reynolds numbers below ‘critical,’ and the 
boundary layer thicknesses are independent of Reynolds number or radial 
position in this Reynolds number range. 

(ii) The ‘centrifugal ’ instabilities mentioned by Faller are associated with a 
violation of the Rayleigh criterion for stability in this type of apparatus; the 
Rayleigh criterion predicts the radius beyond which the fluid is unstable. 

(iii) Faller’s explanation for the apparent variation of critical Reynolds num- 
ber with Rossby number is confirmed: the fact that the perturbations are carried 
into regions of higher Reynolds number as they develop, rather than remaining 
under the same conditions, as in the Couette or Rayleigh-BBnard situations, 
produces this effect. 
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(iv) The type I1 (class A) waves have the spectral characteristics of rather 
narrow-band signals: the Q of the peak in the power spectrum is between 4 and 5, 
and does not vary with Reynolds number. 

(v) The vertical variations of the power in the wave peak in the spectra 
resembles the analytical waveforms derived by Lilly. The minimum in the wave 
energy was found at z /D = 3-5, while Lilly predicts a minimum at z/D = 2-9. 

(vi) The frequency of the wave peak varies in a manner very similar to that 
predicted by Lilly for type I1 (class A) waves, but is only 60 % as great in our 
apparatus (see figure 15). 

(vii) The turbulence had a definite point of onset at  a Reynolds number of 
150. Its intensity increases quite rapidly as the Reynolds number is increased, 
growing intense enough to obscure the wave peak when a Reynolds number of 
300 is reached. This conclusion may be peculiar to this particular apparatus: in 
reviewing t'his paper Faller comments that he has been able to suppress turbu- 
lence up to Re = 500 (at high Rossby numbers, with careful control of inlet 
conditions). 
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